

ballasting mechanisms of microwave power transistors in class C operation," *IEEE Int. Electron Devices Meeting Dig.*, pp. 302-303, Dec. 1974.

[5] A. De Vilbiss, Hewlett-Packard Co., *Preliminary User's Manual, Intergrated Circuit Thermal Analysis*, private communication.

[6] R. C. Joy and E. S. Schlig, "Thermal properties of very fast transistors," *IEEE Trans. Electron Devices*, vol. ED-17, no. 8 pp. 586-594, Aug. 1970.

[7] J. L. Moll, *Physics of Semiconductors*. New York: McGraw-Hill, 1964, p. 155.

[8] S. M. Sze, *Physics of Semiconductor Devices*. New York: Wiley, 1969, pp. 111-126, 200-215.

[9] P. L. Hower and V. G. K. Reddi, "Avalanche injection and second breakdown in transistors," *IEEE Trans. Electron Devices*, vol. ED-17, pp. 320-335, Apr. 1970.

[10] J. T. C. Chen and K. Virma, "A 6 GHz silicon bipolar microwave power transistor," *IEEE Int. Electron Devices Meeting Dig.*, pp. 299-301, Dec. 1974.

[11] H. E. Abraham and R. G. Meyer, "Transistor design for low distortion at high frequencies," *IEEE Trans. Electron Devices*, vol. ED-23, pp. 1290-1297, Dec. 1976.

[12] R. W. Wong and J. T. C. Chen, "A power bipolar transistor optimized for linear performance with octave capability," *IEEE Int. Solid-State Circuits Conf. Dig.*, pp. 160-161, Feb. 1977.

Improvement of a Class-C Transistor Power Amplifier by Second-Harmonic Tuning

SHAMSUR R. MAZUMDER, MEMBER, IEEE, ATAOLLAH AZIZI, STUDENT MEMBER, IEEE,
AND FRED E. GARDIOL, SENIOR MEMBER, IEEE

Abstract—Considerations for the effects of second-harmonic reactive terminations on the performances of a UHF class-C transistor power amplifier are presented. An experimental amplifier circuit design using coupled-TEM-bar transmission lines is described. This circuit can vary the fundamental and the second-harmonic impedance terminations of the amplifier independently. With this amplifier circuit, significant improvement in the performance characteristics of a class-C power amplifier were achieved by presenting proper values of second-harmonic reactive terminations, both at the input and the output of the transistor.

I. INTRODUCTION

IN POWER amplifiers, the transistor is operated as a nonlinear device under large-signal conditions. In certain situations (such as for class-C operation), the nonlinearity of the device generates significant amounts of harmonic components [1]. Furthermore, changes in the impedances presented to the transistor at the harmonic frequencies, while maintaining the same fundamental frequency impedances, result not only in changes in the relative values of the harmonic frequency components but also in different values of the fundamental frequency component. Thus for a good design method to accurately predict the performance characteristics of power amplifiers, one must take into account the significant effects of the source and the load terminating impedances at the harmonic frequencies [2], [7].

In the present work it is considered that the second harmonic is the most dominant of all harmonic compo-

nents. This assumption may be justified by the fact that the transistor package tends to attenuate the third and higher harmonics considerably.

The purpose of this paper is to study the effects of second-harmonic reactive terminations on the performance characteristics of a class-C UHF transistor power amplifier. For this purpose, a coupled-TEM-bar circuit has been designed [3]-[5]. Two such circuits have been used, one at the input and the other at the output port of the transistor. These coupled-TEM-bar circuits can be adjusted to have an important property, i.e., that one can vary the fundamental and the second-harmonic impedances presented to the transistor terminals in a quite independent manner. This characteristic thus allows us to study the effects of varying the second-harmonic terminations on the performances of the amplifier. It is shown in this paper that a significant improvement in the performance characteristics (such as power output, dc-to-RF conversion efficiency and power gain) of a class-C transistor power amplifier can be achieved by proper choice of the second-harmonic reactive terminations of the amplifier.

In the following, the characteristics of the coupled-TEM-bar circuit are described with reference to the actual amplifier circuit. Experimental performances of the amplifier are also presented.

II. EXPERIMENTAL AMPLIFIER CIRCUIT

The experimental amplifier circuit has been designed using two coupled-TEM-bar circuits [3]-[5], one at the

Manuscript received May 15, 1978; revised November 16, 1978.

The authors are with the Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland.

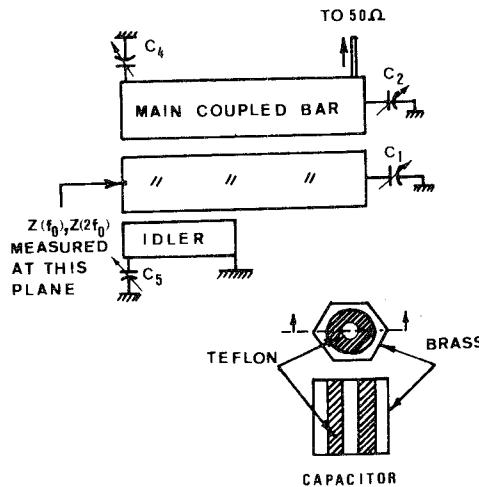


Fig. 1. Schematic of coupled-TEM-bar circuit.

input and the other at the output of the transistor. A schematic of each of the coupled-TEM-bar circuits is shown in Fig. 1. This circuit consists of three coupled bars positioned between two ground planes operating in a TEM mode [4], [5]. Each of the two main coupled bars is approximately $\lambda/8$ long at the fundamental frequency ($f_0 \approx 865$ MHz) of operation. These lines are capacitively loaded by the capacitors C_1 , C_2 , and C_4 . A proper choice of these capacitors and the even- and odd-mode impedances of the main coupled bars make it possible to realize a wide range of impedance matching at f_0 while simultaneously presenting a reactive impedance at the second-harmonic frequency ($2f_0$), thus decoupling the second-harmonic signal from the 50Ω load. This situation allows us to add a low-loss reactive "idler" [4], [5] (the third coupled bar) in order to vary the reactive impedance $Z(2f_0)$ at the second-harmonic frequency, without affecting the fundamental frequency impedance $Z(f_0)$. The third coupled bar is approximately $\lambda/8$ long at the second-harmonic frequency. This bar, in the present case, is shorted at one end and capacitively loaded by C_5 at the other end.

Thus in Fig. 1 the capacitors C_1 , C_2 , and C_4 are used first to establish the required fundamental frequency impedance $Z(f_0)$. Then, the second-harmonic reactive impedance $Z(2f_0)$ can be varied over a wide range by varying capacitor C_5 .

The variable capacitors may be chosen from commercially available types. In the present design, however, they were made by using a small cylinder (threaded inside) of teflon which tightly fills a metallic (brass) cylinder. The value of the capacitor could be varied up to ≈ 7 pF by inserting a screw through the threaded teflon cylinder, as shown in Fig. 1.

A picture of the complete amplifier circuit (with the top cover removed) is shown in Fig. 2. The measurement of the impedances presented to the transistor terminals was accomplished by using a coaxial probe which was put in contact with the end of the main bar near the transistor terminal. The coaxial probe was passed through a hole

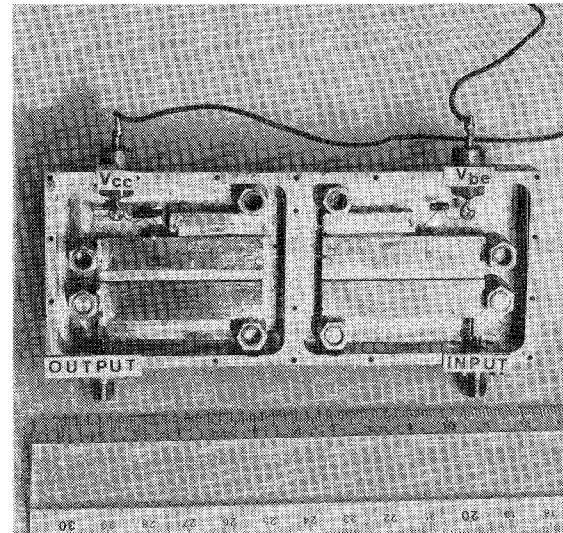
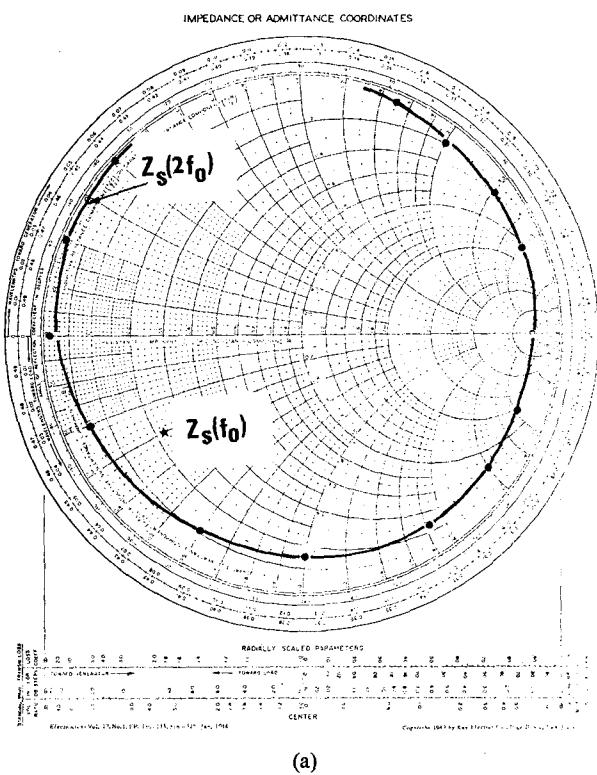
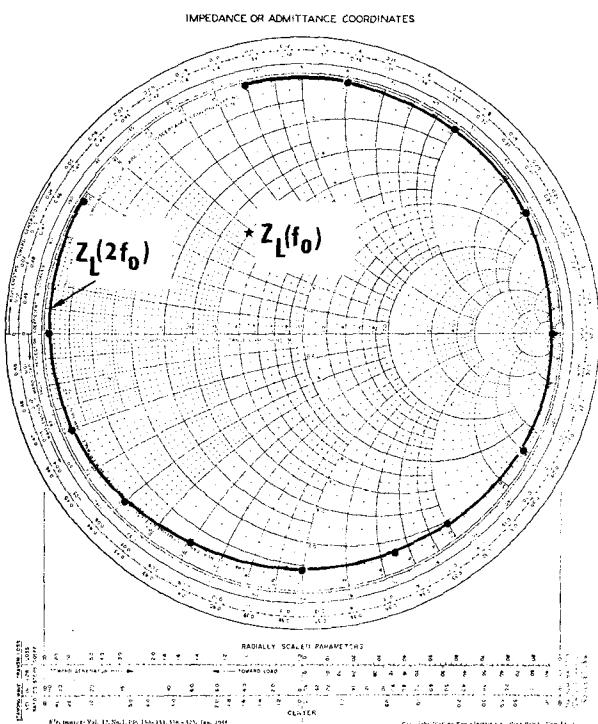


Fig. 2. Photograph of the coupled-TEM-bar amplifier circuit.

(fitting the probe) drilled in the ground plane of the amplifier circuit. The overall dimensions of the amplifier circuit assembly are $12.5\text{ cm} \times 5\text{ cm} \times 1.8\text{ cm}$.


III. EXPERIMENTAL RESULTS

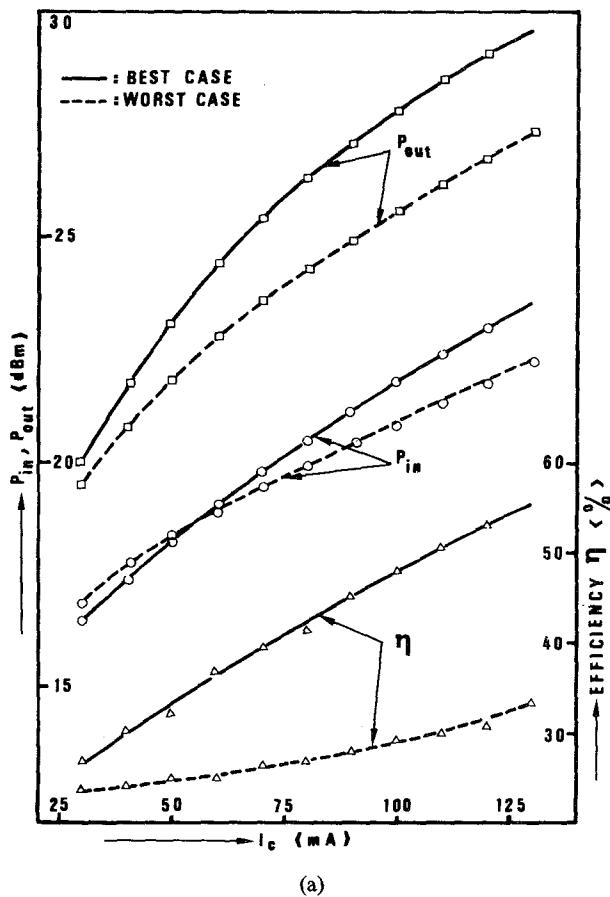
A. Characteristics of the Coupled-Bar Circuits


Characteristics of the two coupled-TEM-bar circuits are shown in Figs. 3(a) and (b). The fundamental frequency impedances, $Z_s(f_0)$ for the source and $Z_L(f_0)$ for the load circuit, were first adjusted by varying the capacitors (C_1 , C_2 , and C_4) loading the main coupled bars. Once the fundamental impedances are adjusted, the second-harmonic reactive impedances $Z_s(2f_0)$ and $Z_L(2f_0)$ can now be varied by the capacitors (C_5) loading the third coupled bar (idler) without changing the fundamental impedances $Z_s(f_0)$ and $Z_L(f_0)$, respectively, as seen from Fig. 3.

B. Amplifier Characteristics

Experimental characteristics of a class-C amplifier ($V_{cc} = 12.5$ V, $V_{BE} = 0.0$ V) using a CTC transistor [type CTC D(1/2)-12(DHE)] at $f_0 \approx 865$ MHz are presented in Fig. 4. To obtain these characteristics, first, the source and the load terminating impedances $Z_s(f_0)$ and $Z_L(f_0)$ at fundamental frequency were adjusted to obtain an "optimum" possible performance of the amplifier. Then, the second-harmonic reactive terminations $Z_s(2f_0)$ and $Z_L(2f_0)$ were varied to find the "best" and the "worst" possible performances of the amplifier. The performance characteristics of a power amplifier are appreciated in terms of power output (P_{out}), power gain (G_p) and dc-to-RF conversion efficiency (η). In Fig. 4(a), these results are presented, where the "solid" and the "broken" lines represent, respectively, the "best" and "worst" case of performances of the amplifier. Since in these two cases the fundamental impedances $Z_s(f_0)$ and $Z_L(f_0)$ are kept constant, the changes in the performances are only due to the second-harmonic reactive terminations of the amplifier. Fig. 4(b)

(a)



(b)

Fig. 3. (a) Range of second-harmonic reactive impedances (for the source termination) obtainable by tuning the third coupled bar in the amplifier circuit of Fig. 2. (b) Range of second-harmonic reactive impedances (for the load termination) obtainable by tuning the third coupled bar in the amplifier circuit of Fig. 2.

shows the frequency response of the amplifier corresponding to the "best" and the "worst" cases.

From the results given in Fig. 4(a), we observe that the performances of the amplifier can be quite significantly

(a)

(b)

Fig. 4. (a) Experimental characteristics of the power amplifier. The "best" (solid lines) and the "worst" (broken lines) case were obtained by varying only the second-harmonic reactive terminations of the amplifier. (b) Frequency response of the amplifier for the "best" (solid lines) and the "worst" (broken lines) cases.

TABLE I
SUMMARY OF AMPLIFIER PERFORMANCES

PARAMETERS	BEST CASE	WORST CASE
Collector current (I_C) mA	120	120
Input power (P_{in}) mW	200	150
Output power (P_{out}) mW	800	480
dc to rf conversion efficiency η % $\eta = \frac{P_{out}}{V_{cc} I_c} \times 100$ $V_{cc} = 12.5 \text{ V}$	53.3 %	32 %
Fundamental frequency f_o (MHz)	865	865
Source terminations at fundamental $Z_s(f_o)$ Ω	$11.5 - j15.0$	$11.5 - j15.0$
Source terminations at 2nd harmonic $Z_s(2f_o)$ Ω	$12.0 - j90.0$	$0.5 - j225.0$
Load terminations at fundamental $Z_L(f_o)$ (ohms)	$25.0 + j24.5$	$25.0 + j24.5$
Load terminations at second harmonic $Z_L(2f_o)$ (ohms)	$2.5 + j5.0$	$1.0 + j125.0$

improved by tuning the second harmonic at the transistor terminals. In other words, it may be said that the performances of a class-C power amplifier can be significantly removed from the optimum case if the second-harmonic terminations are not properly chosen. Since, in high-efficiency power amplifiers, an increase in the dc-to-RF conversion efficiency can result in considerable saving in cost, size, and reliability [6], it appears that the effects of the second harmonic in power amplifiers may be of significant importance.

To better appreciate the significant effects of the second-harmonic tuning on the performances of the amplifier reported here, a summary of the results is presented in Table I.

A physical interpretation of the improvements in the performances of the amplifier may be obtained in terms of the voltage and current waveforms at the transistor terminals. The tuning of the second harmonic may be viewed as "shaping" these voltage and current waveforms to minimize the voltage across the device when current flows through it and/or to minimize the current through the device when voltage exists across it [6].

IV. CONCLUSION

Significant effects of second-harmonic reactive terminations on the performances of a UHF class-C transistor power amplifier are presented. The amplifier circuit has been fabricated by using coupled-TEM-bar circuits. These 3-bar coupled-bar circuits enable one to present, quite independently, the fundamental impedances and the second-harmonic reactive terminations at the input and the output port of the transistor. It has been shown that the performances of a transistor power amplifier can be significantly improved by properly tuning the second harmonic. These results also indicate that, if attention is not paid to the second-harmonic terminations, the amplifier performances may be quite significantly less than optimum ones.

REFERENCES

- [1] R. L. Bailey, "A large-signal non-linear analysis of a high-power high-frequency junction transistor," *IEEE Trans. Electron Devices*, vol. ED-17, pp. 108-119, Feb. 1970.
- [2] S. R. Mazumder and P. D. Van der Puije, "Characterization of nonlinear 2 ports for the design of class-C amplifiers," *IEE J. Microwaves Opt. Acoust.*, vol. 1, no. 4, July 1977.
- [3] G. Matthaei, L. Young, and E. Jones, *Microwave Filters, Impedance Matching Networks and Coupling Structures*. New York: McGraw-Hill, 1964, pp. 193, pp. 217-228.
- [4] J. F. Reynolds, B. E. Berson, and R. E. Enstrom, "Microwave circuits for high-efficiency operation of transferred electron oscillators," *IEEE Trans. Microwave Theory Tech.*, vol. MTT-18, pp. 827-834, Nov. 1970.
- [5] J. F. Reynolds *et al.*, "Coupled TEM bar circuit for L-band silicon avalanche oscillators," *IEEE J. Solid-State Circuits*, vol. SC-5, pp. 346-353, Dec. 1970.
- [6] N. O. Sokal and A. D. Sokal, "Class-E—A new class of high-efficiency tuned single-ended switching power amplifiers," *IEEE J. Solid-State Circuits*, vol. SC-10, pp. 168-176, June 1975.
- [7] H. Q. Vu, S. R. Mazumder, F. E. Gardiol, and N. Volpicella, "Effects of second harmonic terminations on the performances of a class-C transistor power amplifier," *Dig. 6th Colloquium on Microwave Commun.*, Budapest, Hungary, Aug./Sept. 1978.